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The palladium(I1)-catalyzed oxidation of terminal ole- 
fins to methyl ketones (Wacker process) is well estab- 
lished both as an industrial process and an organic 
synthetic reaction.' This reaction appears to involve 
Markovnikov hydration of the complexed double bond 
followed by oxidation in a one-step conversion to a methyl 
ketone.2 Thus, terminal olefins can be regarded as 
masked methyl ketones. Although this process is well- 
known for the conversion of higher olefins to methyl 
ketones, few reports have involved preferential aldehyde 
f~ rma t ion .~  Furthermore, it is reported4 that anti- 
Markovnikov addition occurs in the presence of a het- 
eroatom (Le., N atom or electron-withdrawing group), 
whereas terminal olefins bearing neighboring y-alkoxy 
or y-acetoxy functions were oxidizedlb to the correspond- 
ing methyl ketones. 

Because the direct formation of an aldehyde via attack 
at  the terminal carbon of a terminal double bond would 
be valuable synthetic process, we report here the com- 
pletely regioselective oxygen-oriented Wacker-type reac- 
tion of the acetonides and cyclic carbonates of allylic diols, 
as  shown in Scheme 1. 

The results are summarized in Table l.5 The terminal 
allylic diol 1 was treated with a catalytic amount of PdClz 
and CuCl under an atmospheric pressure of 0 2 ,  in DMF 
and HzO, a t  room temperature for 12 h to afford the 
expected methyl ketone 5 in 90% yield (entry 1). How- 
ever, treatment of the acetonide of the allylic diol 2, under 
the same conditions at  60 "C for 6 h, afforded the 
terminal aldehyde 6 as the sole product (presumably due 
to the anti-Markovnikov hydration) in 93% yield with no 
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x 

H 
1 X = C(CH& 1 PdCIz, CuCI, 02 

MPMO 2x=co  DMFM20 (7 : 1) 

MPM = pMethoxyphenylmethyl 7 8  

formation of the methyl ketone (entry 2). This result is 
in contrast to the published resultlb that Wacker oxida- 
tion of an a-methoxy terminal olefin gives only a methyl 
ketone. It is presumed that simultaneous chelation of 
palladium with two adjacent oxygen atoms might induce 
water to  attack in an anti-Markovnikov fashion. As 
supporting evidence that diol functionality is essential, 
Wacker oxidation of a- or /?-alkoxy olefin did not afford 
/?- or y-substituted aldehyde as the only product.6 

Alternatively, when the diastereoisomer (2R,3S)-2 was 
subjected to the same Wacker conditions, the aldehyde 
(3S,4R)-6 was obtained as the sole product after being 
stirred at  60 "C for 24 h (entry 3). For the allylic cyclic 
carbonate 3,7 under the same conditions, y-hydroxy-a,/?- 
unsaturated aldehyde 7 was obtained in 95% yield (entry 
4). By the same methodology, the allylic cyclic carbonate 
4 provided the aldehyde 8,S [a125D +48 (c 0.7, CHC13) [lit.8b 
[aIz5~ +46 (c 0.1, CHCldI, which is a cytotoxic lipid 
peroxidation p r o d ~ c t , ~  and also an important chiral 
synthon for the synthesis of (+)-coriolic acid,8eJ0 a self- 
defensive substance for the rice blast disease (entry 5). 

Alternatively, we have investigated regioselective pal- 
ladium(I1)-catalyzed oxidation of internal olefins. For the 
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Table 1. Pd(I1)-Catalyzed Oxidation of Terminal Olefins 
of Allylic Diols, Acetonides, and Cyclic Carbonates" 
Entry Substrate Time(h) TempPC) products Yield(%lb 

4 8 

All the reactions were run with PdC12 (10 mol %), CuCl(1 equiv) 
in DMF/H20 (7 : 1)  under atmospheric pressure of oxygen. 
bThe yields are isolated yields. 

internal olefins, it is knownlbJ1 that there is a definite 
influence by the alkoxy or acetoxy group, which may be 
explained by coordination of palladium with the oxygen 
function resulting in control of the regioselection. 

The methyl-substituted diol (E)-9 was oxidized under 
Wacker conditions to P-keto diol 12 in 93% yield (entry 
1). However, treatment of (21-9 under the same condi- 
tions afforded a-keto diol 13 as the only isolated product 
in 90% yield (entry 2). It is presumed that in this 
particular case, steric hindrance around the double bonds 
considerably affects the regiochemistry of the olefin 
oxidation. From the (E)- or (2)-methyl-substituted ac- 
etonides 10, P-keto acetonide 14 was obtained (entries 3 
and 4). When the cyclic carbonates of (E)- or (2)-11 were 
subjected to Wacker oxidation, y-hydroxy-a,P-unsatur- 
ated ketone 15 was afforded (entries 5 and 6). The 
results are summarized in Table 2.7 

A typical procedure is as follows. Preparation of 8: To 
a stirred solution of PdClz (8 mg, 0.05 mmol) and CuCl 

(11) Tsuji, J.; Nagashima, H.; Hori, K. Tetrahedron Lett. 1982,23, 
2679. 

Table 2. Pd(I1)-Catalyzed Oxidation of Internal Olefins" 
Entry Substrate Time(h)Temp('C) Prcducts Yield(%)b 

OH on 
y93 1 MPMO- 12 rt MPMO 

(0-9 OH 12 on 0 

M P M O - q  12 It MPMO& 90 
OH 0 

(2)-9 OH 13 OH 

3 MPMO L 6  6 0 ~ ~ ~ + m  

7co 7c0  0 

7co 

(0-10 14 

4 M P M O q  6 6 0  14 91 

(-910 

5 MPMO & 12 It MPMO 
o& i 

0 0 
(E)-11 1s 

0) 
M p M O a  12 It 15 91 

( 0 1 1  
All the reactions were run with PdC12 (10 mol 8). CuCl(1 equiv) 

in DMF/H?O (7 : 1) under atmospheric pressure of oxygen. 
The yields are isolated yields. 

(42 mg, 0.54 mmol) in DMF and H20 (7:1, 5 mL) under 
oxygen atmosphere was added 4 (100 mg, 0.54 mmol). 
The resulting dark brown solution was stirred at  room 
temperature for 12 h and then extracted with ether. The 
organic layer was dried over anhydrous MgS04 and 
evaporated in vacuo. The crude product was purified by 
SiOz column chromatography (EtOAchexanes = 1:2, R,t 
= 0.30) to  afford 8 (75.9 mg, 90%). 
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